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We consider the rupture dynamics of a homopolymer chain pulled at one end at a constant loading rate r.
Compared to single bond breaking, the existence of the chain introduces two aspects into rupture dynamics:
The non-Markovian aspect in the barrier crossing and the slow down of the force propagation to the breakable
bond. The relative impact of both these processes is investigated, and the second one was found to be the most
important at moderate loading rates. The most probable rupture force is found to decrease with the number of
bonds as fmax�−�ln�const N /r��2/3 and finally to approach a saturation value independent on N. All of our
analytical findings are confirmed by extensive numerical simulations.
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I. INTRODUCTION

Modern developments of micromanipulation techniques
made possible the experiments on the mechanical response
of single molecules to a well-defined load. The typical setup
here corresponds to the force growing linearly in time until
the molecule breaks or changes its structure. Examples are
the molecular failure experiments �1–6� and the ones on pro-
tein unfolding �7�. The dynamic force spectroscopy �7,8� de-
livering the spectrum of the rupture force versus the loading
rate offers a powerful tool to determine the bonds’ strengths
and gives deep insights into the internal dynamics of mol-
ecules �9–12�. In all of these experiments polymers play an
outstanding role, either as elastic couplers or as a subject of
study �5,13,14�. Reference �14� reports a strong impact of the
polymer size on its rupture dynamics. Furthermore, it was
shown, that even the mechanical properties of passive poly-
mer spacers can affect the outcome of pulling experiments
�5,6,13�.

The theoretical description concentrates on breaking of
one �presumably the weakest� bond and fully disregards the
chain structure of the system. From the theoretical point of
view the rupture of a single bond under a constant loading
rate can be described as a thermally activated escape from a
time-dependent potential well �10,11,15–17�. Approximating
the energy landscape close to the barrier up to the third order
Ref. �10� predicts that the rupture force scales like
−�ln�const R��2/3, with R being the loading rate. Numerical
simulations show that this prediction performs better than the
one of a linear theory �8,15�, particularly in the strong pull-
ing limit �16,17�. On the other hand, the situation of breaking
of the more or less homogeneous chain has hardly been con-
sidered theoretically. Thus, Ref. �12�, in addition to consider
an attached chain of different bonds, discusses breaking of a
ring of identical bonds, i.e., of a chain with periodic bound-
ary conditions. Although the experimental realization of this
situation is possible in the setup discussed in Ref. �18�, it
does not correspond to the typical situation. In what follows
we therefore concentrate on a chain pulled at one end with
another end clamped.

For sufficiently low loading rates each bond experiences
the same force and the rupture can occur at an arbitrary
bond—the situation of Refs. �12,18� is recovered. For a high

loading rate the actual force profile along the chain is inho-
mogeneous since the time of the order of the Rouse time �R
�19� is necessary for the stress to propagate through the
chain. If bond rupture occurs on a time scale shorter than the
Rouse time, only a part of the chain is under stress and
accounts for the rupture process. Thus the rupture force will
be crucially affected by the number of monomers in the
chain.

This paper is organized as follows: In the next section we
introduce the chain model and recall in Sec. III the rupture
dynamics of a single Morse bond under constant loading. In
Sec. IV we study the rupture dynamics of the chain. Finally
we summarize our results.

II. MODEL

Our model corresponds to a chain of monomers interact-
ing via the Morse potential U�q� given by

U�q� =
C

2�
�1 − e−�q�2, �1�

with dissociation energy C / �2�� and stiffness C� as a pro-
totype of intramolecular interaction potential offering frag-
mentation. Otherwise, the model is identical to the Rouse
one �19�: We disregard hydrodynamical interactions and de-
scribe the interaction of the monomers with the heat bath via
independent white noises. The constant loading enters
through an additional time-dependent potential of the form

L�q,t� = − qRt , �2�

with loading rate R. The load is denoted by F�t�=
−�L�q , t� /�q and is applied to one end of the chain while the
other end is fixed.

III. SINGLE BOND RUPTURE DYNAMICS

Let us first recall the rupture dynamics of a single Morse
bond under constant loading �10,11,20–22�. At smaller loads
the overall potential has two extrema, a minimum corre-
sponding to a metastable state of the pulled bond, and a
maximum providing the activation barrier. There exists a
critical load Fi=F�ti�=C /4 for which the extrema merge at
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qi=ln�2� /� and disappear. In the purely deterministic dy-
namics the Morse bond breaks exactly at ti=Fi /R. Since the
system is in contact to a heat bath at temperature T, its over-
damped dynamics is described by

q̇ =
C

�
�1 − e−�q�e−�q +

R

�
t +�2kBT

�
��t� , �3�

with ��t� being Gaussian white noise and friction coefficient
�. We introduce c=C /� ��c�=nm /�s�, r=R /� ��r�
=nm /�s2�, and f =F /� �in the following f is referred to as
force�. The diffusion coefficient is denoted by D=kBT /�
��D�=nm2 /�s�.

The probability W1�t� that the bond remains intact can be
expressed through the following kinetic equation
�10,11,20,22� dW1�t� /dt=−k�t�W1�t�, with k�t� being the
Kramers rate �23,24�. Taking f =rt we can rewrite the kinetic
equation in the form

dW1�f�
df

= −
1

r
k�f�W1�f� . �4�

The measured probability density functional �PDF� for the
rupture forces P1�f� then is

P1�f� = −
dW1�f�

df
. �5�

Under the assumption that f is close to f i when bond
rupture occurs, it is usual to expand the potential around the
inflection point qi up to the third order in deviations from qi
�9–11�. We note that the breakdown properties of the chain
only depend on the behavior of the potential close to the
point of critical load, which are universal �11,16,17�. Using
the Morse potential simply gives a convenient parametriza-
tion of the situation in terms of dissociation energy and stiff-
ness. The Kramers rate becomes

k�f� =
c�

4�
�1 −

f

f i
e−�c/3�D��1 − �f/f i��

3/2
. �6�

Solving �4� one derives

W1�f� = W0 exp�−
v
r

exp�− w�1 −
f

f i
	3/2
� �7�

with v=c�2D / �8�� and w=c / �3�D�. The normalizing pref-
actor is

W0 = exp�v
r

e−w	 . �8�

In the limit of small loading rates the most probable rupture
force fmax follows the scaling relation �9,10�:

fmax = f i�1 −  ln�v
r
	

w
�

2/3

� . �9�

IV. CHAIN OF N BONDS

Let us now turn to a chain of N bonds. To be concrete and
to illustrate the viability of the effects we chose some typical

experimental parameter values �15,25,26� −C / �2��=3.5
	10−19 J with �=1010 m−1, kBT=4	10−21 J, the friction co-
efficient �=2	10−6 kg /s, and a loading rate R=10−7 N /s.
This experimentally relevant loading rate corresponds to r
�10−4 nm /�s2 in our calculations. The estimates show that
the effects discussed below are important for chains consist-
ing of less then 103 monomers.

A. Chain with a single breakable bond

To get insight into the role of the chain we consider first
the situation when only one bond is breakable and take this
bond to be either at the fixed or at the pulled end of the
chain. The rest of the chain is considered as a harmonic
Rouse one. The influence of the chain on the breaking prop-
erties of the bond is twofold: First, due to the coupled dy-
namics, the overall noise force acting on the monomer stems
from the whole rest of the chain and is non-Markovian. Sec-
ond, since the force does not propagate immediately through
the chain, a bond at the grafted end of the chain experiences
at the beginning the force smaller than the one that is applied
at the pulled terminal. The rupture of a single breakable
Morse bond at the fixed wall is affected both by the non-
Markovian fluctuations and by the force profile propagation.
In contrast, a bond situated at the pulled terminal of the chain
feels the instantaneous force, and the deviations from the
single-bond rupture statistics are solely due to the non-
Markovian character of the noise. Figure 1 shows the most
probable rupture force fmax as a function of the number of
bonds in the chain N for both situations, revealing quite dif-
ferent behavior. Thus, for a breakable bond at a wall fmax
�dashed lines� lies well above the reference value for a single
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FIG. 1. �Color online� Most probable rupture force fmax for a
single breakable Morse bond situated at the fixed �dashed lines� or
at the pulled end �solid lines� of a chain of N−1 harmonic springs
as a function of N. Red lines correspond to r=10−3 nm /�s2 while
the blue lines correspond to r=10−5 nm /�s2. The flat solid line
shows the value of fmax for a single bond, given by Eq. �9�. The
parameter values are c=3.5 nm /�s, D=2	10−3 nm2 /�s, and �
=10 nm−1. Error bars indicate the uncertainty due to the binning of
numerical data.
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bond �flat solid line�, while for the breakable bond at a pulled
terminal fmax lies slightly below the value for the single bond
�colored solid lines�. We conclude that non-Markovian fluc-
tuations accelerate the rupture process while the retarded
force propagation delays it. Since the effect of delay is by an
order of magnitude stronger—the stronger the higher the
loading rate—we neglect the impact of the non-Markovian
character of the fluctuations and neglect correlations intro-
duced by noise by assuming that the rupture of different
bonds is independent.

The simulations correspond to solving the set of coupled
equations

q̇j = − Kj�qj − qj−1� + Kj+1�qj+1 − qj� + �2D� j + rt
 j,N,

�10�

with j=1, . . . ,N, q0=0, Kj�q�=−�Uj�q� /�q and Uj being ei-
ther the Morse potential �for the breakable bond� or the har-
monic potential corresponding to the same stiffness of the
bond �for all the others� by use of a Heun integration
scheme. A rupture is considered as having taken place when
a reaction coordinate qj+1−qj passed the location of the ac-
tivation barrier of the breakable bond. Statistics stem from an
ensemble of at least 103 simulation runs.

B. Chain of N breakable Morse bonds

We pass to a chain of N breakable Morse bonds. Let
W1�f j�t�� be the probability of the bond j to be intact. Let r
be very small, r�1 nm /�s2. Then, we can assume the forces
acting on each spring along the polymer chain are virtually
the same. This is expected to be true at least for a not too
large value of N. The probability that all N bonds are intact is
then given by

WN�f� = W1�f�N. �11�

Then, the probability that a bond breaks in an interval �f , f
+df� is PN�f�=NW1�f�N−1P1�f� and is given by the same
expression as P1 with v changed for Nv. Together with �9�
we derive the following limiting scaling relation for the most
probable rupture force:

fmax = f i�1 −  ln�Nv
r
	

w
�

2/3

� . �12�

The experimentally obtained curves of the most probable
rupture forces are expected to tend to this scaling relation in
the limit of vanishing loading rates. We remark that the scal-
ing predicted by Eq. �12� differs from the one given in
�14,27� since the latter is based on the linear theory. A com-
parison of the experimental results of �14� with the predic-
tions of Eq. �12� shows that it describes the data just as
adequately as the linear theory considered in the work, and
none of the theories can be falsified at the existing �high�
level of the experimental uncertainties.

Let us now turn to higher loading rates. The probability
that all N bonds in the chain are still intact under a pulling
force at the terminal of the chain being f�t� is then given by

WN��f j�t��� = �
j=1

N

W1�f j�t�� . �13�

Passing to the continuum limit �j→x� we obtain

WN�t� = exp��
0

N

ln�W1�f�x,t���dx	 . �14�

Since barrier crossing events are very rare, most of the
time the motion of the monomers takes place close to the
quadratic potential minima of bond energies. Therefore, we
derive the force profile by considering a semi-infinite chain
of harmonic springs pulled at x=0 with a force f�t�=rt, i.e.,
by solving the following continuum equation for the scalar
displacement field q�x , t�:

q̇�x,t� = c��xq�x,t� + rt
�x� . �15�

For not too short chains the impact of the clamped end can
be neglected.

Then, the force profile f�x , t� connected to q�x , t� via
f�x , t�=−c�dq /dx is given by

f��,t� = f�t���1 − erf� �

2
	
�1 +

�2

2
	 −

�

��
e−�2/4� ,

�16�

with �=x /�c�t. Linearizing this result near �=0,

f��,t� � f�1 −
2�

��
	 , �17�

with f � f�t�. Together with Eqs. �7� and �14� we obtain

WN�f� = W0
N exp�−

vl

3rw2/3�f
��2

3
,a�f�	

− �2

3
,a�f��1 + S�N, f��3/2	
� . �18�

Here �b ,z�=�z
�tb−1e−tdt is the incomplete  function,

l= f i
�c�� /r, a�f�=w�1− f / f i�3/2, and S�N , f�

=2N�r / �c����f / �f i− f�.
We remark, that in the limit f →0, WN�f →0�→W1

N→1.
Finally, the probability density distribution reads as

PN�f� = − WN�f�� vl

6rw2/3f3/2��2

3
,a�f�	

− �2

3
,a�f��1 + S�N, f��3/2	


−
vl

2r�f
� e−a�f�

f i
− � 1

f i
−

N/l
�f

	e−a�f��1 + S�N, f��3/2
� .

�19�

One might doubt the accuracy of these results based on the
linearization assumption, Eq. �17�, since for large values of �
the force f�x , t� can become negative in the region where it
essentially must vanish, which is an unphysical result. How-
ever, this property of Eq. �17� has no impact on the rupture
kinetics. A negative force exponentially suppresses the rate
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of escape, see Eq. �6�, leading to the fact that the correspond-
ing bonds simply do not break. For the rupture kinetics there
is therefore no difference between getting negative forces or
setting the force to zero, as it is the situation in the physical
experiment. To prove this we also performed calculations
with a modified profile f�� , t�= �1−2� /�����1−2� /��� in-
stead of Eq. �17�, and found practically no difference in the
outcome of the theory which for itself agrees very well with
the numerical simulations.

In Fig. 2 we present the numerically obtained most prob-
able rupture force fmax as a function of the loading rate r for
a chain of length N=100. Shown are also the predictions of
Eq. �9� �dashed line�, of Eq. �12� �dotted line�, and the most
probable rupture force fmax as derived from Eq. �19� �solid
line�. In the limit of small r the value of fmax tends to the
prediction of Eq. �12�: Virtually all bonds account for the
rupture process of the chain. In the opposite limit of very
large loading rates only a few bonds contribute to rupture �in
the extreme limit only the one at the pulled end of the chain�
and the scaling of fmax is given by Eq. �9�. The crossover
behavior is very well reproduced by the theory �Eq. �19��.
Small deviations appear for the intermediate values of r
where the exact force profile along the chain plays a role and
the linear approximation in Eq. �17� gets slightly inaccurate.
Higher-order corrections might resolve this issue.

In Fig. 3 we present the numerically obtained most prob-
able rupture force fmax as a function of the chain length N for
r=10−5 nm /�s2. Shown are also the prediction of Eq. �12�
�dashed line�, and the one of Eq. �19� �solid line�. For not too
large systems, the predictions of Eq. �12� and of Eq. �19�
tend to each other and both describe well the numerical find-
ings. Deviations appear for larger system sizes N, where both
the numerical results and the prediction of Eq. �19� saturate.
We also show in Fig. 4 that Eq. �19� �solid line� adequately
describes the PDF of the actual rupture forces �bars�.

The overall behavior shown in Fig. 3 corresponds to a
transition from the small-N scaling regime to a saturation
after some Ns�r� depending on the loading rate. The value of
Ns can be estimated as follows. A single bond rupture is

governed by P1�f� and rupture occurs with highest probabil-
ity at f�x , t�= fmax with fmax given in Eq. �9�. The value of
fmax can be translated into the most probable time to break
via tmax= fmax /r. The distribution P1�f� is strongly skewed to
the left-hand side �10,11�, and its variance is given by

�1
2 =

2�2f i
2

27w4/3
1

ln�v
r
	2/3 , �20�

see Ref. �9�. We then can assume that the rupture of a bond
hardly occurs if the corresponding force is f � fmax−2�1. The
portion of the chain Ns in which the broken bond is localized
is then determined by the condition that the force at the bond
number Ns is fmax−2�1 at the time when the first bond is
most probably going to break, i.e., f�Ns , tmax�= fmax−2�1.
Resolving Eq. �17� for the corresponding value of x=Ns we
obtain
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FIG. 2. Most probable rupture force fmax as a function of the
loading rate r. The length of the chain is N=100. The theoretical
values �solid line� are derived from Eq. �19�. The remaining param-
eter values are the same as in Fig. 1.
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Ns�r� = � c2��3

54r
	1/2 1

�ln�v
r
	w2
1/3�1 −  ln�v

r
	

w
�

2/3

�
−1/2

.

�21�

For r=10−5 nm /�s2 we have Ns�100, in qualitative agree-
ment with the outcome of our numerical simulations, and for
r=10−4 nm /�s2 we get Ns�35 �again in agreement with
simulations, not shown�.

V. SUMMARY

Let us summarize our findings. Compared to single bond
breaking, the existence of the chain introduces aspects into

rupture dynamics, the most important being the delayed
stress propagation along the chain. We show that the most
probable rupture force decreases with the length of the chain
as fmax�−�ln�const N /r��2/3 and then saturates at a value de-
pending on the loading rate. The results of theoretical con-
siderations are confirmed by numerical simulations. They un-
derline the need to take into account the chain structure of
the system under study when interpreting experimental data.
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